Publikationen

Alle Ver­öf­fent­li­chun­gen zu unse­ren The­men­ge­bie­ten fin­dest Du hier zum Down­load als PDF-Datei bzw. einen Refe­renz­link zur Down­load­sei­te der Gesamt­pu­bli­ka­ti­on. Bei Rück­fra­gen ste­hen wir Dir ger­ne über unser Kon­takt­for­mu­lar zur Ver­fü­gung.

2019

Aquaponics Systems Modelling

Autoren:
Karel J. Kees­man, Oli­ver Kör­ner, Kai Wag­ner, Jan Urban, Divas Kariman­zi­ra, Tho­mas Rau­schen­bach, and Simon God­dek

Abs­tract:
Mathe­ma­ti­cal models can take very dif­fe­rent forms and very dif­fe­rent levels of com­ple­xi­ty. A sys­te­ma­tic way to pos­tu­la­te, cali­bra­te and vali­da­te, as pro­vi­ded by sys­tems theo­ry, can the­re­fo­re be very hel­pful. In this chap­ter, dyna­mic sys­tems model­ling of aqua­po­nic (AP) sys­tems, from a sys­tems theo­re­ti­cal per­spec­ti­ve, is con­si­de­red and demons­tra­ted to each of the sub­sys­tems of the AP sys­tem, such as fish tanks, anae­ro­bic diges­ter and hydro­po­nic (HP) green­house. It fur­ther shows the links bet­ween the sub­sys­tems, so that in princip­le a com­ple­te AP sys­tems model can be built and inte­gra­ted into dai­ly prac­ti­ce with respect to manage­ment and con­trol of AP sys­tems. The main chal­len­ge is to choo­se an appro­pria­te model com­ple­xi­ty that meets the expe­ri­men­tal data for esti­ma­ti­on of para­me­ters and sta­tes and allows us to ans­wer ques­ti­ons rela­ted to the model­ling objec­ti­ve, such as simu­la­ti­on, expe­ri­ment design, pre­dic­tion and con­trol.

Down­load­link zum Buch

Development of denitrification in semi-automated moving bed biofilm reactors operated in a marine recirculating aquaculture system

Autoren:
Orestis Stav­ra­ki­dis-Zachou, Anne­lie­se Ernst, Chris­ti­an Stein­bach, Kai Wag­ner, Uwe Wal­ler

Abs­tract:
This stu­dy exami­ned the per­for­mance of three inde­pendent­ly ope­ra­ted deni­tri­fy­ing moving bed bio­film reac­tors (MBBRs) in a zero-exchan­ge mari­ne recir­cu­la­ting aquacul­tu­re sys­tem (RAS) sto­cked with Euro­pean sea­bass (Dicen­trar­chus labrax). A semi-auto­ma­ted con­trol stra­te­gy was app­lied to fos­ter spon­ta­ne­ous deni­tri­fi­ca­ti­on. Pro­cess auto­ma­ti­on con­sis­ted of a pul­sed car­bon sup­ply and an inflow of nitra­te-rich, aera­ted pro­cess water con­trol­led by the oxi­da­ti­on-reduc­tion poten­ti­al (ORP) in the MBBR. Car­bon dosing fre­quen­cy was adjus­ted manu­al­ly if the pro­cess pro­du­ced unwan­ted pro­ducts (i.e., nitri­te or ammo­nia). OPR-con­trol­led inflow sti­mu­la­ted bac­te­ri­al acti­vi­ties in the MBBRs until inflow reached the pre-set maxi­mum at a hydrau­lic reten­ti­on time (HRT) of 0.75 h. This allo­wed for a quick start-up of the deni­tri­fi­ca­ti­on pro­ces­ses in spi­te of high initi­al varia­bi­li­ty of pro­cess water inflow and of nitra­te remo­val effi­ci­en­cy (NRE). A start-up with gly­ce­rol did not indu­ce a sta­ble deni­tri­fi­ca­ti­on pro­cess; howe­ver, after the pro­cess had been estab­lis­hed with ace­tate, gly­ce­rol pro­mo­ted effi­ci­ent deni­tri­fi­ca­ti­on with NRE clo­se to one. The suc­ces­si­ve app­li­ca­ti­on of the two car­bon sources resul­ted in a high nitra­te remo­val rate (NRR) of 2 kg nitrate‑N m−3 day−1 in the bio­fil­ters. This dimi­nis­hed the con­cen­tra­ti­on of nitra­te-nitro­gen (nitrate‑N) in the RAS (volu­me 9 m³) from176 to 36g m−3 in 42 days with bio­fil­ters com­pri­sing only 1% of the RAS volu­me. The impli­ca­ti­ons for the deve­lo­p­ment of an auto­ma­ted deni­tri­fi­ca­ti­on pro­cess are dis­cus­sed.

Arti­kel kau­fen

Newsletter abonnieren

Du möchtest regelmäßige Updates zu SEAWATER Cubes erhalten? In unserem monatlichen Newsletter informieren wir zu aktuellen Themen und Entwicklungen rund um unser Unternehmen. Außerdem warten spannende Fachbeiträge zum Thema Aquakultur sowie exklusive Informationen zu Veranstaltungen auf Dich.

Vielen Dank! Du hast Dich erfolgreich für unseren Newsletter angemeldet.