Recirculating aquaculture systems (RAS)

The cul­ti­va­ti­on of fish on land has been great­ly opti­mi­zed over the past cen­tu­ries. In par­ti­cu­lar, the clo­sed recir­cu­la­ting aquacul­tu­re sys­tem (RAS) has now estab­lis­hed its­elf along­side tra­di­tio­nal aquacul­tu­re methods such as pond sys­tems, net cages and flow-through sys­tems. In order to get a con­cre­te over­view of the dif­fe­ren­ces bet­ween the­se methods, the cha­rac­te­ris­tics of tech­no­lo­gi­cal recir­cu­la­ting aquacul­tu­re sys­tems are com­pa­red with tra­di­tio­nal bree­ding methods. In addi­ti­on, the SEAWATER Cube is used to exp­lain the con­struc­tion of an inno­va­ti­ve clo­sed recir­cu­la­ti­on sys­tem in detail in the indi­vi­du­al pro­cess steps.

Traditional aquaculture vs. high-technological recirculation systems

If you com­pa­re exten­si­ve or semi-inten­si­ve methods such as pond sys­tems, net cages and flow-through sys­tems with clo­sed recir­cu­la­ti­on sys­tems, the dif­fe­ren­ces quick­ly beco­me clear with regard to the fol­lowing over­view. From an eco­lo­gi­cal point of view, the RAS have a clear advan­ta­ge and also with regard to the regio­na­li­ty of pro­duc­tion and the reduc­tion of emis­si­ons the­se sys­tems can score points.

Design of a closed recirculation system using the example of the SEAWATER Cube

The SEAWATER cir­cuit, as a clo­sed cir­cuit for rea­ring fish, is com­po­sed of 10 essen­ti­al com­pon­ents for water tre­at­ment. The fish bea­ring tank, the drum fil­ter, the cir­cu­la­ti­on pump and the bio­fil­ter with aera­ti­on by the com­pres­sor are loca­ted in the main cir­cuit. Also, the skim­mer with addi­ti­on of ozone by the ozone gene­ra­tor, the CO2 desorp­ti­on and the deni­tri­fi­ca­ti­on are in the main cir­cuit, but they are only char­ged with a part of the water flow. The sedi­men­ta­ti­on is loca­ted in a bypass of the drum fil­ter and the fish bea­ring tank.

  1. The fish bea­ring tank is com­ple­te­ly fil­led with water and ser­ves as habi­tat for the ani­mals. Fish feed and oxy­gen are put into it. In addi­ti­on, the excre­ments of the fish (feces, CO2, ammo­nia or ammo­ni­um) are trans­por­ted by the strong cur­rent of the water to the first com­po­nent of the water tre­at­ment. Rele­vant and mea­sura­ble para­me­ters are among others the salini­ty (in salt­wa­ter aquacul­tu­re), tem­pe­ra­tu­re, pH-value and redox poten­ti­al as well as oxy­gen content.
  2. The drum fil­ter is used to dischar­ge solids and par­ti­cles gene­ral­ly lar­ger than 40µm (depen­ding on the mesh size of the fil­ter gauze)
  3. The par­ti­cle-con­ta­mi­na­ted back­wa­sh water is led into the sedi­men­ta­ti­on for water recla­ma­ti­on. The­re the par­ti­cles sett­le on the bot­tom. This for­med sludge is spe­ci­fi­cal­ly remo­ved from the sys­tem, whe­re­as the cla­ri­fied water in the upper part of the sedi­men­ta­ti­on is retur­ned to the system.
  4. The cir­cu­la­ti­on pump trans­ports the water of the sys­tem from the pump well, with the drum fil­ter insi­de, into the water tre­at­ment com­pon­ents and thus gene­ra­tes the necessa­ry flow for the water treatment.
  5. The bio­fil­ter uses the bio­lo­gi­cal pro­cess of nitri­fi­ca­ti­on to con­vert the ammo­nia or ammo­ni­um excreted by the fish first to nitri­te and then to nitra­te. This task is per­for­med by auto­tro­phic, aero­bic bac­te­ria, which adhe­re to plastic car­ri­ers (car­ri­ers or fil­ter pel­lets) by forming a biofilm.
  6. This for­mer pro­cess requi­res oxy­gen, which is trans­por­ted by the com­pres­sor into the fil­ter component.
  7. The ozone gene­ra­tor sup­ports the pro­cess of foam for­ma­ti­on in the sub­se­quent step and pro­mo­tes the detach­ment of pro­te­ins from par­ti­cle surfaces.
  8. The skim­mer is a phy­si­cal­ly working device, also cal­led „flota­ti­on“ or „pro­te­in skim­mer“. In this pro­cess step, sur­face-acti­ve pro­te­in com­pounds are adhe­red to the air bub­bles intro­du­ced in a coun­ter­cur­rent pro­cess. This pro­du­ces a foam for­ma­ti­on. The foam is then dischar­ged with the ampho­ly­tic sub­s­tan­ces, viru­ses and par­ti­cles (e.g. bac­te­ria) adhe­ring to it. In the skim­mer all small par­ti­cles (< 40 µm) are remo­ved from the water which could still pass the drum filter.
  9. CO2 desorp­ti­on is a degas­sing com­po­nent to remo­ve the car­bon dioxi­de excreted by fish and bac­te­ria into the water. In addi­ti­on, the out­side air intro­du­ced in the CO2 desorp­ti­on ser­ves to cool the water.
  10. The anae­ro­bic bio­fil­ter, the so-cal­led deni­tri­fi­ca­ti­on, also works with bac­te­ria and cor­re­spon­ding car­ri­ers. Deni­tri­fi­ca­ti­on essen­ti­al­ly repres­ents the con­ver­si­on of nitra­te to ele­men­tal nitro­gen (N2) and works only at low oxy­gen con­cen­tra­ti­ons (approx. < 0.1 mg/L; anae­ro­bic con­di­ti­ons = under oxy­gen exclu­si­on). The nitro­gen is released into the ambi­ent air.

Final­ly, if you take a look at the dif­fe­rent sys­tems, it can be sta­ted that open aquacul­tures such as pond sys­tems are pro­bab­ly the „ide­al“ in the minds of con­su­mers due to their bio­di­ver­si­ty. Due to the enor­mous amount of space requi­red, the­se bree­ding methods can­not be used to sus­tainab­ly incre­a­se the popu­la­ti­on in Ger­ma­ny. The high los­ses cau­sed by dise­a­ses, cli­ma­tic extre­mes or fish-eating ani­mals are also problematic.

The decisi­ve advan­ta­ge of clo­sed recir­cu­la­ti­on sys­tems is their inde­pen­dence from exter­nal influ­en­ces. Whe­re up to now main­ly lar­ge-sca­le plants were sta­te of the art, alter­na­ti­ve con­cepts are slow­ly deve­lo­ping. The SEAWATER Cube is an examp­le of a modern, com­pact and stan­dar­di­zed plant sys­tem. It enab­les the pro­duc­tion of ups­ca­le edi­ble fish, which small to medi­um-sized com­pa­nies can offer for sale regio­nal­ly. In addi­ti­on to the small space requi­re­ment, no major con­struc­tion and instal­la­ti­on work is requi­red for the com­mis­sio­ning of the plant. With inno­va­ti­ve com­pon­ents, we always ensu­re a very good water qua­li­ty in the plant and can thus great­ly redu­ce the occur­rence of dise­a­ses. In the SEAWATER Cube, the use of anti­bio­tics is com­ple­te­ly avoided and the important bac­te­ri­al cul­tures in the bio­lo­gi­cal fil­ters are spa­red. Fur­ther­mo­re, with this sys­tem we crea­te the pos­si­bi­li­ty of a trans­pa­rent pro­duc­tion, which the­re­fo­re offers the con­su­mer more trans­pa­ren­cy and crea­tes a pro­xi­mi­ty to the product.

Aquacul­tu­re is the fas­test-gro­wing area of food pro­duc­tion. Inves­ting in sus­tainab­le fish far­ming methods is worthwhile, as this is the only way to con­ser­ve the world’s oce­ans and make a decisi­ve con­tri­bu­ti­on to pro­tec­ting natu­ral stocks.


— Badio­la, M.; Men­dio­la, D.; Bos­tock, J.: Recir­cu­la­ting Aquacul­tu­re Sys­tems (RAS) ana­ly­sis: Main issu­es on manage­ment and future chal­len­ges. Else­vier B.V., 2012.

— Lekang, O.-I.: Aquacul­tu­re Engi­nee­ring. Second Edi­ti­on, John Wiley & Sons, Ltd., 2013.

— Mar­tins, C. I. M.; Eding, E. H.; Ver­de­gem, M. C. J.; Heins­broek. T. N. et al: New deve­lo­p­ments in recir­cu­la­ting aquacul­tu­re sys­tems in Euro­pe: A per­spec­ti­ve on envi­ron­men­tal sus­taina­bi­li­ty. Aquacul­tu­ral Engi­nee­ring, Else­vier B.V., 2010.

— Orel­la­na, J.; Wal­ler, U.; Wecker, B.: Cul­tu­re of yel­low­tail king­fi­sh (Serio­la lalan­di) in a mari­ne recir­cu­la­ting aquacul­tu­re sys­tem (RAS) with arti­fi­cial sea­wa­ter. Else­vier B.V., 2013.

— Stein­bach, C.: Ent­wick­lung eines Sub­stra­tes für Fließ­bett-Deni­tri­fi­ka­ti­ons­stu­fen in Fluid­kreis­läu­fen der Mari­kul­tur. Mas­ter­the­sis, Hoch­schu­le für Tech­nik und Wirt­schaft des Saar­lan­des, 2014.

— Schaar, S.: Aus­le­gung eines deni­tri­fi­zie­ren­den Bio­fil­ters in einer geschlos­se­nen Kreis­lauf­an­la­ge für Wolfs­bar­sche. Bache­lorthe­sis, 2019.

—–15OE026-naturland-bergleiter-2017-kreislaufanlagen-aquakultur.pdf, auf­ge­ru­fen am 02.10.2019

—  Stav­ra­ki­dis-Zachou, O.; Ernst, A.; Stein­bach, C.; Wag­ner, K.; Wal­ler, U.: Deve­lo­p­ment of deni­tri­fi­ca­ti­on in semi-auto­ma­ted moving bed bio­film reac­tors ope­ra­ted in a mari­ne recir­cu­la­ting aquacul­tu­re sys­tem. Sprin­ger Natu­re Switz­er­land, 2019.

— van Rijn, J.: Was­te tre­at­ment in recir­cu­la­ting aquacul­tu­re sys­tems. Aquacul­tu­ral Engi­nee­ring, Else­vier B.V., 2012.

Newsletter abonnieren

Du möchtest regelmäßige Updates zu SEAWATER Cubes erhalten? In unserem monatlichen Newsletter informieren wir zu aktuellen Themen und Entwicklungen rund um unser Unternehmen. Außerdem warten spannende Fachbeiträge zum Thema Aquakultur sowie exklusive Informationen zu Veranstaltungen auf Dich.

Vielen Dank! Du hast Dich erfolgreich für unseren Newsletter angemeldet.