Microbiology and technology of denitrification

In clo­sed aquacul­tu­re – e.g. in sys­tems with a water exchan­ge of less than 10% per day – the use of deni­tri­fi­ca­ti­on is essen­ti­al (read more in our blog post Nitri­fi­ca­ti­on and Deni­tri­fi­ca­ti­on). Deni­tri­fi­ca­ti­on con­verts the nitra­te (NO3) con­ver­ted from fish excre­ments (ammonium/ammonia) during nitri­fi­ca­ti­on with the help of spe­cial bac­te­ria, the so-cal­led deni­tri­fiers. Mole­cu­lar nitro­gen (N2) is for­med from the nitra­te in the absence of oxy­gen, which then escapes from the plant in gas­eous form. This is com­ple­te­ly harm­less to the envi­ron­ment, sin­ce the quan­ti­ties pro­du­ced are very small and the atmo­s­phe­re alrea­dy con­sists of almost 80% nitrogen.

Deni­tri­fi­ca­ti­on is thus an important sub-pro­cess in main­tai­ning water qua­li­ty and thus con­tri­bu­tes to less stress and mor­ta­li­ty among fish. Fur­ther­mo­re, it enab­les par­ti­cu­lar­ly low water exchan­ge rates, which are bene­fi­cial to the environment.

The deni­tri­fi­ca­ti­on pro­cess is rela­tively deman­ding and dif­fi­cult to con­trol. This means that every detail is important in the con­struc­tion of such a filter:

Biological aspects

Deni­tri­fi­ca­ti­on works only under oxy­gen exclu­si­on. This is becau­se deni­tri­fiers take oxy­gen from the nitra­te (NO3) (reduc­tion) and, tog­e­ther with a car­bon source (C‑source), con­vert it to more avail­ab­le ener­gy. A dis­tinc­tion can be made bet­ween deni­tri­fi­ca­ti­on with auto­tro­phic or hete­ro­tro­phic bac­te­ria. Auto­tro­phic deni­tri­fiers use the car­bon com­pounds natu­ral­ly pre­sent in water as a C‑source, whe­re­as hete­ro­tro­phic deni­tri­fiers use a car­bon source such as ace­tic acid (CH3COOH). This makes deni­tri­fi­ca­ti­on fil­ters more effi­ci­ent, sin­ce rea­di­ly avail­ab­le C‑sources can be used and added very pre­cise­ly matched to the pro­cess. Howe­ver, mea­su­ring tech­no­lo­gy must always be used to pre­vent over­do­sing of the C‑source, as this can have nega­ti­ve con­se­quen­ces for the ent­i­re recir­cu­la­ti­on sys­tem. In this case, auto­tro­phic deni­tri­fi­ca­ti­on has an advan­ta­ge des­pi­te signi­fi­cant­ly poo­rer efficiency.

Technical aspects

Deni­tri­fi­ca­ti­on can be car­ri­ed out as a fixed, floa­ting bed or floc reac­tor. Fixed-bed deni­tri­fi­ca­ti­on is most­ly auto­tro­phic, as the bac­te­ria both adhe­re to the car­ri­er mate­ri­al used for this pur­po­se and also break it down to use it as an ener­gy source. With floa­ting bed deni­tri­fi­ca­ti­ons, fil­lers are usual­ly made out of plastic, which can move free­ly in the reac­tor by means of a pump or agi­ta­tor. The­se fil­lers are only used to adhe­re on by the bac­te­ria and are not decom­po­sed. A car­bon source is added to a floa­ting bed reac­tor to gene­ra­te ener­gy. In a floc deni­tri­fi­ca­ti­on, the bac­te­ria accu­mu­la­ti­ons float free­ly in the water. The­re are no fil­lers or simi­lar to which they can adhe­re. The reten­ti­on of the bac­te­ria in the reac­tor is done by a fil­ter at the out­let. Most­ly this vari­ant is also ope­ra­ted hete­ro­tro­phi­cal­ly, e.g. with dosing of a car­bon source.

Constructive aspects

The deni­tri­fiers use part of the ener­gy to build up their own bio­mass. The­re­fo­re, it is a gre­at con­struc­ti­ve chal­len­ge that both the con­stant­ly gro­wing amount of bio­mass can be remo­ved in the mean­ti­me (e.g. drai­ning the sedi­ment at the bot­tom of the tank) and the most homo­ge­ne­ous mixing and thus nut­ri­ent sup­ply of the reac­tor is pos­si­ble. Espe­cial­ly thick and old bio­films block the reac­tor and its tubes. In addi­ti­on, the bac­te­ria in such a bio­film can hard­ly reach nitra­te or car­bon, so that the decom­po­si­ti­on capa­ci­ty of the reac­tor col­lap­ses for lack of nutrients.

No mat­ter which type of deni­tri­fi­ca­ti­on is used, each has its own advan­ta­ges and dis­ad­van­ta­ges. It is par­ti­cu­lar­ly important that the pro­cess of deni­tri­fi­ca­ti­on is care­ful­ly con­trol­led. Poor design or incor­rect­ly set para­me­ters can affect ani­mal wel­fa­re. The­se inclu­de unde­s­i­ra­ble by-pro­ducts such as nitri­te or hydro­gen sul­fi­de, which can be pro­du­ced in the event of car­bon under- or overdosage.

In the SEAWATER Cube, we rely on a floa­ting bed deni­tri­fi­ca­ti­on pro­cess with fil­lers spe­cial­ly adap­ted and shaped for this pro­cess. Due to the hig­her effi­ci­en­cy, an exter­nal car­bon source is also used. Auto­ma­ti­on con­stant­ly moni­tors and con­trols the deni­tri­fi­ca­ti­on pro­cess in order to best avoid risks to water qua­li­ty and ani­mal welfare.

You need a deni­tri­fi­ca­ti­on tailo­red to your plant or you have any questions?

Further informationen about Denitrifaction

Check out more facts about the tech­no­lo­gy. If you have any fur­ther ques­ti­ons, plea­se con­ta­ct us!


— van Rijn, J.; Tal, Y.; Schrei­er H. J.: Deni­tri­fi­ca­ti­on in recir­cu­la­ting sys­tems: Theo­ry and app­li­ca­ti­ons. Else­vier B.V., 2005
— Lom­pe, D.; Wies­mann, U.: Bio­lo­gi­sche Deni­tri­fi­ka­ti­on nitrat­hal­ti­ger Abwäs­ser und Grund­wäs­ser. VCH Ver­lags­ge­sell­schaft mbH, Wein­heim, 1991
— Lee, P. G.; Lea, R. N. et al.: Deni­tri­fi­ca­ti­on in aquacul­tu­re sys­tems: an examp­le of a fuz­zy logic con­trol pro­blem. Else­vier Sci­ence B.V., 2000
— Soares, M. I. M.: Bio­lo­gi­cal deni­tri­fi­ca­ti­on of ground­wa­ter. Klu­wer Aca­de­mic Publis­hers, 2000.

Image source

Newsletter abonnieren

Du möchtest regelmäßige Updates zu SEAWATER Cubes erhalten? In unserem monatlichen Newsletter informieren wir zu aktuellen Themen und Entwicklungen rund um unser Unternehmen. Außerdem warten spannende Fachbeiträge zum Thema Aquakultur sowie exklusive Informationen zu Veranstaltungen auf Dich.

Vielen Dank! Du hast Dich erfolgreich für unseren Newsletter angemeldet.